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Low temperature dynamics of Ising ferromagnets under finite magnetic fields are studied in terms of quan-
tum spin representations of stochastic evolution operators. These are constructed for the Glauber dynamic as
well as for its modification, introduced by Parket al. fPhys. Rev. Lett.92, 015701s2004dg. In both cases the
relaxation time after a field quench is evaluated both numerically and analytically using the spectrum gap of the
corresponding operators. The numerical work employs standard recursive techniques following a symmetriza-
tion of the evolution operator accomplished by a nonunitary spin rotation. The analytical approach uses low
temperature limits to identify dominant terms in the eigenvalue problem. It is argued that the relaxation times
already provide a measure of actual nucleation lifetimes under finite fields. The approach is applied to square,
triangular and honeycomb lattices.
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I. INTRODUCTION

Nucleation phenomena are of basic importance in a wide
range of metastable systems which typically involve the
crossing of a free energy barrier that is large compared to
thermal fluctuationsf1g. Classical examples of such situation
are the formation of droplets in an undercooled gas or of
crystals in an undercooled liquid, whereas numerous analo-
gies can also be found in contexts as diverse as, for instance,
material sciencef2g, astrophysicsf3g, and quantum liquids
f4g. Owing to the initial state of these systems, generally
produced by a rapid quench from a stable phase, the resulting
decay time before escaping from metastability may be ex-
tremely large at low temperatures. A significant part of the
theoretical understanding of these relaxation processes has
been amply developed in the study of kinetic Ising ferromag-
nets as microscopicslatticed models of nucleation. In this
framework, the metastable phase can be prepared after
equilibrating the system under an external magnetic fieldh
which is then suddenly reversed. The system therefore
evolves toward the full minimization of its free energy via
the formation of droplets or small clusters of spins aligned
with the new field direction. These droplets start growing
with very small rates until at least one of them exceeds a
critical size, i.e., a saddle point configuration or a local maxi-
mum in the free energy landscape, thus triggering a rapid
magnetization change in the whole system. This stems in part
from the competition between the energy gained by aligning
spins with the field and the interface energy created in reori-
enting previously parallel spins; thus escape from metastabil-
ity essentially occurs when the cost of the latter is out-
weighted by the gain of the former.

Several analytical studies have been addressed to eluci-
date the dynamical aspects of these processes in the low
temperature limit f5–9g while more recently, the actual
evaluation of average nucleation lifetimes has been studied
combining a range of numerical and analytical efforts
f10–16g. As a further step in this direction, in this work we
discuss an alternative low temperature proceduresboth nu-
merical and analyticald, to estimate the relaxation timet of

Ising ferromagnets evolving through detailed balance sto-
chastic rulesf17g. Specifically, we consider both the usual
Glauber dynamicf18g along with a seemingly minor modi-
fication of the latter which, however, yields entirely different
characteristics at large magnetic fieldsf11g. In either case,
we construct a quantum spin representation of the evolution
operator whose spectrum gapst−1d provides a measure of
nucleation rates. In line with the general grounds referred to
above, the implicit assumption allowing for this identifica-
tion is that the first passage timef17g to create randomly a
critical nucleus is much longer than the characteristic time
scale involved in subsequent growthf19g. Thus, the relax-
ation of the entire system can be expected to coincide with
the inverse of the probability of escaping from the metastable
well. A posteriori, our results will lend further support to this
view.

Another assumption that is usually made in homogeneous
systems—and which is crucial for the feasibility of our nu-
merical approach—is that multi spin-flip events as well as
fusion between subcritical clusters are vanishingly rare in the
low temperature limitf1,5g. This is supported by our analytic
work. Therefore, the relevant length scale over which the
slow part of the dynamic takes place is of the order of a
critical droplet size, the first one to nucleate. Although on
one hand this prevents us from dealing with small field re-
gimes, where the nucleus becomes macroscopic in the limit
h→0; on the other hand this enables us to study otherh
regions using numerically accessible clusters, so long as the
nucleus can be contained in them. This does not presuppose
a precise knowledge of either the nucleus size and shape
ssometimes a conceptual problem of its ownf7,20gd, or the
most probable path during a nucleation eventf5,7g, so in this
regard our numerical and analytical procedures provide a
complementary approach to that of absorbing Markov chains
f17g and other related techniques discussed in Refs.
f10,11,14,16g.

For two-dimensional lattices and low temperaturesT, the
average nucleation timetsh,Td we aim to evaluate has been
rigorously shown to be parametrizable asf5g
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t = AshdexpfbGshdg; s1d

thus, the temperature dependence enters solely in the factor
1/b=kBT shereafter the Boltzmann constantkB is set equal to
1d. Independently of the stochastic dynamic considered, the
exponential argumentG has been often associated with the
energy barrier separating the saddle point from the meta-
stable phase. In fact, for the Glauber dynamics the analysis
of Ref. f5g corroborates this issue. However, the results of
Refs. f10,11g clearly indicate that this interpretation ofG is
not always correct, even though the geometry of the critical
droplets remains unaltered by the change of dynamic. In par-
ticular, for the modified GlaubersMGd dynamics considered
there f21g, and to be discussed in the following sections,
despite detailed balance the value ofG does not actually
yield that energy barrier. Moreover, under strong magnetic
fields the nucleation process led by the MG dynamics turns
out to remain activesi.e., G.0d, whereas above a maximum
field the standard Glauber dynamic just exhibits a fast decay
sG;0d. As for the amplitudesA of Eq. s1d, as well as for
those involved in the nucleation times of a variety of systems
f1,13g, they have been usually difficult to evaluate numeri-
cally given their subdominant contribution. However, the
lack of a fair estimation of these prefactors may introduce far
reaching theoretical implications in the nucleation picture
f22g. Recent efforts have been addressed to remedy this situ-
ation in the context of Ising ferromagnets under finite fields
f10,11,13,16g. On departing from the low temperature regime
assumed in Eq.s1d, these amplitudes have revealed a struc-
ture of narrow peaksf13g which, however, rapidly collapses
toward a piecewise constant function ofh in the limit T
→0. Their actual values also turn out to be dynamics depen-
dent f10,11g. Here, we numerically estimate theG and A
parameters under finite fields using both the Glauber and MG
dynamics introduced in Ref.f11g. To check the reliability of
our numerical operational approach we compare its results
with those obtained in square latticesf5,11g, and then pro-
ceed further in honeycomb and triangular lattices where no
results are previously available to our knowledge. One can
expect that in addition to the evolution details, the relaxation
parameters will be also affected by the lattice structure as it
determines the geometry of the critical droplets ultimately
controlling the nucleation timef5,7g. Apart from the square
lattice, their size and shape are not knowna priori but nei-
ther is needed in our procedure. Our low temperature ana-
lytic work provides results forG andA parameters generally
in good agreement with their numerical estimates.

The layout of this work is organized as follows. In Sec. II
we recast the master equation governing the probability dis-
tribution of these processes in terms of a quantum spin anal-
ogy whose “Hamiltonian” provides the appropriate transition
rates between the original Ising spin configurations. By
means of an ulterior nonunitary spin rotation, this results in a
symmetric representation of the evolution operator. This sim-
plifies considerably the subsequent numerical analysis of
Sec. III in which the spectrum gap of this latter representa-
tion is obtained via standard recursive techniquesf23g in
several situations. In Sec. IV we develop the analytical ap-
proach, in which low temperature limits are used to pick out

dominant terms in the hierarchy of equations obtained by
applying the quantum spin Hamiltonian to an appropriate
metastable state. We end the paper with Sec. V which con-
tains our conclusions along with some remarks on extensions
of this work.

II. DYNAMICS AND OPERATORS

Let us then consider an Ising ferromagnet with uniform
nearest neighborsNNd interactionsJ.0 between the spins
s= ±1 of a regulard-dimensional lattice. Under an applied
magnetic fieldh, taken positive from now on, the corre-
sponding Hamiltonian reads

HI = − J o
kr ,r8l

srsr8 − ho
r

sr , s2d

where the first and second sums run, respectively, over all
NN or bond pairskr ,r 8l, and all spin locationsr of the
lattice. SinceHI actually defines a classical energy func-
tional, the constituent spins do not have a natural dynamics,
i.e., ]tsr =fHI ,srg;0. Consequently, a specific stochastic
evolution must be prescribed so as to emulate the interac-
tions between the spins and a heat bath, here modeling the
fast degrees of freedom not included in the classical Hamil-
tonianHI. As usual, the underlying nonequilibrium dynamics
is then approximated by a discrete Markovian process and
therefore described by a master equation. The latter governs
entirely the time evolution of the probabilitiesPss,td of find-
ing the system in a certain spin configurationusl at timet. If
Wss→s8d denotes thestime independentd rate or transition
probability per unit time at which configurationusl evolves to
us8l, the master equation just adopts the continuity form

]tPss,td = o
s8

fWss8 → sdPss8,td − Wss→ s8dPss,tdg. s3d

Because in the context of Sec. I metastability is imposed
by an external field, among the decay processes represent-
able by Eq.s3d we restrict our attention to those in which the
total magnetization is not preservedf24g. One of the most
studied examples of this type is the Glauber dynamicf18g.
Its transition rates involve Ising configurations differing at
most in the state of a spin at a given siter . With the aid of
the local field variables, which henceforth we define aswr
=sJ/Tdokr ,r8lsr8, these rates can be written as

WGssr → − srd = f1 + e2swr+Hdsrg−1, s4d

whereH=h/T. The iteration of these rules eventually bring
the system to the Gibbs distribution as they clearly satisfy
detailed balance in Eq.s3d, that is, Wss→s8de−HIhsj=Wss8
→sde−HIhs8j. However, other single-spin-flip or Glauber type
processes can also be made consistent with these latter con-
ditions, so the approach to equilibrium in these problems is
not unique. As was referred to above, a recent case of this
situation was introduced in Ref.f11g with the aim of clarify-
ing earlier issues of metastable lifetimes. In the MG dynam-
ics proposed there, the effects of theJ interactions and the
field h are factorized in the transition rates. More specifically,
these are given byf25g
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WMGssr → − srd = f1 + e2wrsrg−1f1 + e2Hsrg−1. s5d

Although it can be easily checked that such rates also com-
ply with detailed balance, it will turn out that each of the
above dynamics behaves quite differently under strong field
regimes.

A. Mean field excursus

Before constructing a more convenient representation for
these processes, we pause briefly to consider this latter dy-
namic at a simple mean field level of description. Despite
being quantitatively uncontrolled, on the other hand it is able
to account for some relevant qualitative features actually oc-
curring in the MG dynamicsssee Secs. III and IVd. Thus, in
order to decouple the rather involved hierarchy of equations
implicit in Eq. s3d we simply approximate the local field
variableswr by their mean valuezkslJ/T, in turn assumed to
be homogeneous. Here,ksl denotes the average magnetiza-
tion whereasz stands for the number of NN spins, i.e., the
lattice coordination number. After inserting the so approxi-
matedWMG rates in Eq.s3d, we readily obtain the magneti-
zation dynamics in terms of a nonlinear differential equation
which at finite fields and low temperature regimes reduces to

]tksl =
1 − ksl

1 + e−2zkslJ/T, h/T @ 1. s6d

Hence, for the region of our interest the relaxation dynamics
comes out to be field independent in this scheme. Although
this is not the actual case below a minimumh value ssee
results of Secs. III and IVd, yet the analysis of Eq.s6d pin-
points a genuine difference with respect to the Glauber dy-
namics. Notice that for this latter, ifh/J.z, in the limit T
→0 the resulting master equation is totally decoupled by the
Glauber ratess4d, just as if the spins were independent. Then,
it follows that ]tksl=1−ksl, and therefore the time scale of
the Glauber problem is of the order of an elementary step,
namely,t=1 ssee also Sec. IIId. By contrast, in Eq.s6d the
magnetization evolves initially with a much slower pace as
its change is exponentially plunged by the initial metastable
phase. In fact, the integration of the reciprocal of Eq.s6d
betweenksl=−1 and a subsequent magnetizationksl.−1 in-
volves large escape times. More precisely, with the aid of the
exponential-integral function Eisksld and its asymptotic ex-
pansionsf26g, we obtain

t ,
T

4zJ
e2zJ/T, T/J ! 1. s7d

This is consistent with a value ofG=2zJ in Eq. s1d which
later on will be corroborated both numericallysSec. IIId as
well as analyticallysSec. IVd. The corresponding amplitudes,
however, are significantly underestimated by this mean field
simplification which nevertheless is already able to capture
the metastability of MG dynamics, at least under strong field
conditions.

B. Quantum spin representations

We now build up an alternative representation of Eq.s3d
lending itself more readily for a numerical study in finite

spin clusters which, as pointed out in Sec. I can embody the
nucleation time of much larger systems. First, it is useful to
recall the matrix elements of the evolution operatorH asso-
ciated with a generic Markovian process. In terms of transi-
tion rates, these elements are constructed asf17g

ks8uHusl = − Wss→ s8d, sÞ s8, s8d

ksuHusl = o
s8Þs

Wss→ s8d. s9d

This permits us to think of the master equation in imaginary
time as a Schrödinger-like representationuPstdl=e−HtuPs0dl
in which the probability distributionuPstdl=osPss,tdusl
evolves according to the action of the evolution operator—
here playing the role of the Hamiltonian—on the initial state
uPs0dl sin our case, a metastable Gibbs distribution opposing
the new field directiond. The specific form ofH in either of
the above dynamics can be straightforwardly found in terms
of spin-12 Pauli matricessW and interpreting the local field
variables involved in Eqs.s4d ands5d as local field operators
wr

z:

wr
z =

J

T
o

kr ,r8l

sr8
z , s10d

which just for convenience are taken diagonal, say in thesz

representation. To connect twoz configurations of spins dif-
fering in the state of siter , and therefore to account for the
off diagonal elementss8d, we simply project the correspond-
ing “rate operator”sset by wr

zd, in terms of the usual spin
raising and lowering projectorssr

+,sr
−. For example, using

the Glauber ratess4d, the operational counterpart of Eq.s8d
will read

o
s,s8,sÞs8

us8lks8uHGuslksu = − o
r

hsr
+f1 + e−2swr

z+Hdg−1

+ sr
−f1 + e2swr

z+Hdg−1j. s11d

Sincefwr
z,sr

±g=0, the above ordering of application is imma-
terial. On the other hand, conservation of probability requires
the emergence of the diagonal elementss9d. They basically
count the number of ways in which a given configurationusl
can evolve to different statesus8l through a single spin flip.
This can be properly tracked down by using the number
operatorsn̂r =sr

+sr
− along with the weighting of each flip

with its corresponding rate. For the Glauber case the analog
of Eq. s9d then becomes

o
s

uslksuHGuslksu

= o
r

hn̂rf1 + e2swr
z+Hdg−1 + f1 − n̂rgf1 + e−2swr

z+Hdg−1j

=
1

2o
r

f1 − sr
z tanhswr

z + Hdg, s12d

which together with Eq.s11d completes the form ofHG.
Certainly, the above reasoning is extensible to the MG dy-
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namic as well. The related evolution operatorHMG of this
case thus finally turns out to be

HMG = −
1

2
sechHo

r
fsr

+eHs1 + e−2wr
z
d−1 + sr

−e−Hs1 + e2wr
z
d−1g

+
1

4o
r

s1 − sr
z tanhwr

zds1 − sr
z tanhHd, s13d

which of course reduces toHG whenh=0 f25g. Also, it can
be easily verified that either of these operators remains in-
variant under the spin inversionsz→−sz along with the field
reversalh→−h, as they should. Given the rather involved
manner in which all spins are coupled through the local field
operatorswr

z, exact analytic treatments of the spectrum ofHG
or of HMG under generic field and temperature conditions
may seem unlikely, even ind=1 f27g. However, by exploit-
ing low temperature limits analytic procedures can be devel-
oped and applied, as shown in Sec. IV. In addition, numerical
progress can be made in fair system sizes by means of a
suitable similarity transformation which we now discuss.

C. Symmetric representations

As is known f17g, the detailed balance property of rates
s4d ands5d warrants the existence of representations in which
HG and HMG are symmetric and thereby diagonalizable.
Moreover, acommontransformation for that purpose can be
found for both dynamics. To this end, we rotate the corre-
sponding operators around thez spin direction using a site
dependent pure imaginary angle

fr = − iswr + Hd, s14d

where thew’s are the original scalar fields introduced in Eqs.
s4d ands5d. This rotation is produced by the nonunitary simi-
larity transformationU=e−iS with S= 1

2orfrsr
z, which in turn

results in the direct product

U = ^
r

Ur , Ur = Fe−swr+Hd/2 0

0 eswr+Hd/2G . s15d

While the diagonal terms ofHG andHMG remain unaltered
by U, it is straightforward to show that

Usr
±U−1 = e7swr+Hdsr

±. s16d

From this latter relation, one can immediately verify that the
rotated Glauber operatorHG8 =UHGU−1 can finally be cast in
the symmetric form

HG8 =
1

2o
r

f1 − sr
z tanhswr

z + Hd − sr
x sechswr

z + Hdg,

s17d

whereas the rotated versionHMG8 =UHMG8 U−1 of the MG dy-
namics is also symmetric and comes out to be

HMG8 =
1

4o
r

fs1 − sr
z tanhwr

zds1 − sr
z tanhHd

− sr
x sechwr

z sechHg. s18d

The formal analogy with the Schrödinger picture referred
to above now becomes more transparent, as all solutions of
the master equation are necessarily obtained as superposi-
tions of eigenstatesucll with real eigenvaluessor energiesd
lù0 of Hermitian Hamiltonians. In particular, the ground
statesuc0l of both HG8 and HMG8 coincide and are closely
related to the equilibrium Gibbs distribution. This is because

kc̃u;osksu is the left steady state of the original stochastic
operatorssnotice that their columns add up to zerod, and

thereforekc0u=kc̃uU−1=osksue−bHIhsj/2, modulo a normaliza-
tion factor ÎZ involving the partition function of the Ising
energiess2d. It is thereby a simple matter to check that in our
symmetric representation the dynamics of any classical
quantityA swhich is already diagonal in thesz representa-
tion, such as the magnetization, the energyHI, or any micro-
scopic correlatord can be written as

kAlstd =
1

Z
o

s

Ahsje−bHIhsj + o
l.0

e−ltkc̃uU−1Aucll

3kcluUuPs0dl. s19d

Thus, we see that the relaxation times discussed throughout
Sec. I can be read off from the first excited level of the
evolution operators constructed so far and whose numerical
analysis we next turn to consider.

III. NUMERICAL RESULTS

The main advantage of the symmetric representationss17d
and s18d is that their lower eigenmodes, which are just the
ones dominating the above nonequilibrium terms, can be ef-
ficiently computed using recursion-type algorithms devised
for Hermitian matrices, e.g., the Lanczos techniquef23g. The
latter is particularly appropriate to study system sizes ca-
pable of accommodating critical droplets arising from not
too small field regimes. Specifically, for asquarelattice the
critical nucleus is anL3 sL−1d rectangle of overturned
spins gathered to a similar spin on one of its long sides of
length L=f2J/hg, where f g denotes the integer partf5g.
Hence, in line with the general arguments of Sec. I one could
expect that forh/J*0.5 a spectrum gap of at least a 534
spin system will suffice to yield actual values of nucleation
times in the low temperature limit.

Thus, starting from a random initial state but chosen or-
thogonal to the Gibbs-like distributionuc0l referred to above,
we carried out the standard Lanczos procedure in such spin
clusters using periodic boundary conditionsshereafter, as-
sumed throughout this sectiond. Let us first consider the
Glauber operators17d. In Fig. 1 we show the results obtained
from its first excitation levell1, i.e., above equilibrium,
when varying the fieldh/JP s1,4d at low temperature re-
gimes T/J,0.2–0.4. The nucleation time parametrization
conjectured by Eq.s1d, here identified with 1/l1, is consis-
tent with both the data collapse in the main panel as well as
with the linear behavior evidenced in the inset. In particular,
the slopes of the latter detect three typical amplitude values
which in turn are used as scaling factors in the main panel,
thus producing, as expected, the collapse of different curves.
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After a least square linear fitting of our data, the correspond-
ing relaxation parameters within the above temperature and
field ranges are found to be

GG ,516.s1dJ − 6.s0dh, 1 &
h

J
, 2,

8.s1dJ − 2.s0dh, 2 ø
h

J
& 4,6

s20d

AG ,5
0.4s3d, 1 &

h

J
, 2,

1.9s4d,
h

J
= 2,

1.3s3d, 2 ,
h

J
& 4.

6
It should be mentioned thatbelow T/J,0.1 andh/J,1, the
spectrum gap gradually becomes comparable to the numeri-
cal propagation of our roundoff errors, while the conver-
gence of the Lanczos recursion becomes slow and erratic.
Nonetheless, above those regimes, where these problems do
not show up, our results are already in fair agreement with
those of Ref.f11g as well as with the low temperature analy-

sis of Sec. IV. As conjectured earlier, size effects are negli-
gible around this field region, at least judging from 333,
434, and preliminary results in 634 spin arrays, all of
which can enclose the critical droplets depicted in Fig. 1. In
this regard, notice that the corresponding values ofGG are
consistent with both the surface tension and magnetic energy
of such droplets, in turn recovering the interpretation ofG as
an energy barrier. Also by approaching the decoupling con-
dition h/J=z from below, the low lying levels, which were
nondegenerate so far, closely approach one another, as they
should, whereasGG→0.

Bolstered by these consistency checks, we now turn our
procedure to honeycomb and triangular lattices for which
these nucleation parameters are not previously availablessee
also Sec. IVd. Due to the roundoff limitations mentioned
above, we restricted the computations respectively toh/J
*0.5, T/J*0.1 andh/J*1.5, T/J*0.3. For the first situa-
tion, Fig. 2 displays the results so obtained in an 18-spin
honeycomb clustersschematized by its lower insetd. These
are in line with the parametrizations1d, and for which our
numerical estimations yield

GG ,514.s1dJ − 10.s1dh, 0.5&
h

J
, 1,

6.s0dJ − 2.s0dh, 1 ø
h

J
& 3, 6

s21d

FIG. 1. Low temperature estimation of the relaxation parameters
G;T lnst /Ad in square lattices forT=0.2 ssquaresd, 0.3 strianglesd,
and 0.4scirclesd resulting from the Lanczos diagonalization of Eq.
s17d in small clusterssup to 634 spinsd. Solid lines denote the
estimations of Eq.s20d. The data collapse was attained upon using
the amplitudesA=es derived from the slopess of the upper inset.
From top to bottom they refer respectively toh=1.7, 2, and 2.3,
characterizing typical regimes of Eq.s17d. The lower lines sketch
the shape of the critical droplets for 1,h,2 sthree spinsd and 2
,h,4 ssingle spind. Here and in all subsequent figures,T, h, andG
are measured in units of the exchange couplingsJ.

FIG. 2. Relaxation parameters of honeycomb lattices estimated
from the diagonalization of Eq.s17d using the 18-spin cluster de-
picted by the lower inset. As in Fig. 1, the amplitudes yielding the
data collapse in the main panelfT=0.2 ssquaresd, 0.3 strianglesd,
and 0.4scirclesdg were inferred from the slopes of the upper inset.
The latter refer respectively toh=0.75 stopd, 1 smiddled, 1.5 sbot-
tomd and are representative of the field regimes summarized in Eq.
s21d ssolid lines of main paneld.
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AG ,5
0.1s6d, 0.5&

h

J
, 1,

2.2s1d,
h

J
= 1,

1.3s3d, 1 ,
h

J
& 3.

6
Preliminary tests using 24-spin clusters showed no substan-
tial differences with these results. This conforms with the
fact that within our accessible lower field bounds, the above
GG’s at most can entail a five-spin nucleussassuming the
usualG interpretation still holdsd. However, the shape of this
nucleus cannot be inferred only from its surface tension
s14Jd asz is not large enough. In contrast, the results of the
triangular lattice lend themselves more readily for this pur-
pose, at least for the field range shown in Fig. 3. After ana-
lyzing 434 and 534 triangular clusters, in this case further
cusps in G and amplitude discontinuities are detected,
namely,

GG ,5
32.s1dJ − 10.s1dh, 1.5&

h

J
, 2,

20.s0dJ − 4.s0dh, 2 ø
h

J
, 4,

12.s0dJ − 2.s0dh, 4 ø
h

J
& 6,

6
s22d

AG ,5
0.7s0d, 1.5&

h

J
, 2,

1.s0d,
h

J
= 2,

0.4s5d, 2 ,
h

J
, 4,

1.4s2d,
h

J
= 4,

1.2s2d, 4 ,
h

J
& 6.

6
Next, we consider the modified Glauber operators18d. In

all studied situations, its numerical treatment comes out to be
numerically more demanding, i.e., spectrum gaps are even
smaller than before, particularly belowh/J=z−2. So we
limit our computations toh/J*1, T/J*0.2 for square,
h/J*0.3, T/J*0.2 for honeycomb, andh/J*2, T/J*0.3
for triangular lattices. Despite these restrictions, the results of
Fig. 4 clearly support larger values ofGshd than those ob-
tained for the Glauber dynamic. Also, the amplitude values
turn out to be different as well as their regimes of validity.
Specifically, for the square latticefFig. 4sadg, we find

GMG ,516.s1dJ − 4.s0dh, 1 ,
h

J
, 2,

8.s0dJ,
h

J
ù 2, 6

s23d

AMG ,5
0.2s3d, 1 ,

h

J
, 2,

1.4s2d,
h

J
= 2,

1.s0d,
h

J
. 2,

6
whereas for honeycombfFig. 4sbdg and triangularfFig. 4scdg
systems the respective parameters become

GMG ,514.s1dJ − 8.s0dh, 0.3&
h

J
, 1,

6.s0dJ,
h

J
ù 1, 6

s24d

AMG ,5
0.1s3d, 0.3&

h

J
, 1,

1.6s6d,
h

J
= 1,

1.s0d,
h

J
. 1,

6
and

FIG. 3. Relaxation parameters of triangular lattices arising from
the gap of Eq.s17d in 434 and 534 spin clusters. As before, the
data collapse was obtained from the slopes of the upper inset. The
former refers tofT=0.3 strianglesd, 0.4 ssquaresd, and 0.5scirclesdg,
and follows closely the field regimes given in Eq.s22d, denoted by
solid lines. The amplitudes resulting from the inset slopes are char-
acteristic of the regimes identified in Eq.s22d. Here, they refer to
h=1.8, 2, 3, 4, and 4.5, in descending order. The size and shape of
critical droplets are schematized below. From left to right they refer
to five spinss1.5&h,2d, two spinss2,h,4d, and a single spin
s4,h,6d.
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GMG ,520.s1dJ − 2.s0dh, 2 &
h

J
, 4,

12.s0dJ,
h

J
ù 4, 6

s25d

AMG ,5
0.3s4d, 2 &

h

J
, 4,

1.1s6d,
h

J
= 4,

1.s0d,
h

J
. 4.

6
It is worth remarking that, as before, the square lattice pa-
rameters are in reasonable agreement with those of Ref.f11g,
which lends us further confidence in the identification of
1/l1 with the nucleation time of the system. Since in all
studied casesGMGshd.GGshd, notice that the usual associa-
tion of G with an energy barrier no longer applies for this
dynamicsf10,11g. Also, these results give evidence that the
nucleation process persists at large times and fields, i.e.,
GMG=2Jz.0, as opposed to the Glauber picture wheret
=1 beyondh/J=z. Other tests using much larger fields sug-
gest an identical behaviorssee also Sec. IVd, always main-
taining a nondegenerate levell1.

Finally, we point out that errors throughout allA’s might
be actually larger than those estimated above, given their
subdominant contribution tot in Eq. s1d, especially within
the smaller field regions. This is reflected in the low sensi-
tivity of the data collapse to amplitude changes slightly away
from their error bandssarising only from upper insetsd.

IV. LOW TEMPERATURE ANALYSIS

Here we develop a low temperature analysis, starting
from the quantum formulation of Sec. II, which provides
analytic results for the relaxation parametersG and A. The
method employs the unsymmetrized Hamiltonian

H = − o
r
Fssr

+ − Pr
−dR+So

r8

sr8
z D + ssr

− − Pr
+dR−So

r8

sr8
z DG ,

s26d

where r8 are the neighbors ofr, and Pr
± ; 1

2s1±sr
zd. Low

temperature versions of the appropriate ratesR±smd are used.
Here, and throughout,m is an integer corresponding to the
“total spin” of the neighbors, and6 relates to flip up or
down. The unsymmetrized form ofH is easier to work with
because the low temperature forms of the rates there are
nicely separated.

With unl the amplitude corresponding to a domain ofn up
spins in the eigenfunction for eigenvalues, the eigenvalue
problem involves a hierarchy of equations relatingunl to
un±1l, each of which is of the following schematic form:

fcnR
+s¯d + dnR

−s¯d − sgunl

= cnR
+s¯dun + 1l + dnR

−s¯dun − 1l. s27d

Here the coefficientscn anddn depend on geometric factors

FIG. 4. Relaxation parameters ofsad square,sbd honeycomb,
and scd triangular lattices under themodified Glauber dynamics
given in Eq.s5d. Solid lines in each case stand, respectively, for the
regimes identified in Eqs.s23d–s25d. In sad and sbd they follow
closely the data ofT=0.4 scirclesd, 0.3 strianglesd, and, 0.2
ssquaresd, obtained from the numerical diagonalization of Eq.s18d;
and similarly forscd, where the points denoteT=0.8 strianglesd, 0.6
scirclesd, and, 0.4ssquaresd. In contrast to the standard Glauber
dynamics, here the relaxation process remains active at large fields,
i.e., G.0 for h@J. As before, the amplitudes were derived from
the slopes of the insets. In descending order they refer respectively
to sad h=1.5,2,2.5,sbd h=0.75,1,1.5, andscd h=2,2.5,4,5shori-
zontal lined, typical cases of each situation.
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of the lattice such as its coordination numberz. These equa-
tions are consistent with an equal amplitude eigenstate with
eigenvalues=0. We want the next eigenvalue, i.e., the “gap”
s=sAebGd−1.

The relaxation from a metastable state, which we take to
have all spins downsi.e., antiparallel to the fieldd, is gov-
erned by the slow rates, especially the slow up-flip rates.
Which rates are small depends on the field, so different field
regimes have to be considered separately. The first equation
sn=0d has d0=0, i.e., the only terms come fromc0R

+s¯d
=R+s−zd, corresponding to nucleation of a single up spin,
which state has amplitudeu1l. The only case whereR+s−zd is
not small at low temperatures is the Glauber dynamics case
with zJ,h, whereR+smd,1 for all m. The equations then
give the gap of order 1, so

GG = 0, h/J . z. s28d

In all other casesR+s−zd is exponentially small inb at low
temperatures, and this results in nonzeroG for Glauber dy-
namicssGd with zJ.h and for modified Glauber dynamics
at anyh. So we confine our attention hereafter to those cases,
at very low temperatures. Then,R+s−zd is by far the smallest
of the flip-up ratesfsince for any positive integerl, for MG
dynamicsR+s−ld,e−2blJ!1, while in the Glauber case, if
h, lJ thenR+s−ld,e−2bslJ−hd!1g. Consequently we may ne-
glect terms involving further factors ofR+s−zd, as occur, cor-
responding to further nucleations of isolated single-spin clus-
ters, in the equations forn.0. As a result, in Eq.s27d, for
amplitudesunù2l, it is only necessary to consider “con-
nected clusters” where all up spins have at least one up-spin
neighbor. For example the second equationsn=1d has
c1R

+s¯d=zR+(−sz−2d) and d1R
−s¯d=R−s−zd after neglect-

ing the further nucleation terms involvingR+s−zd.
While basic ideas and procedures are similar for G and

MG dynamics, because of the different forms of their rates,
the ordering of terms in the equations can be different in
some regimes, so we discuss the two cases separately, begin-
ning with the Glauber case.

A. Glauber dynamics

Case (a). This includesd-dimensional lattices withzJ
.h. sz−2dJ. Here R+s−zd,e−2bszJ−hd!1, and all other
R+smd,1 while R−s−zd,1.

The resulting recursion type eigenequations havesas al-
waysd the equal amplitude solution withs=0, andsbecause
the only smallR+ occurring is in the first equationd the next
eigenvalue satisfiessin the low temperature limitd fR+s−zd
−sgsz+1−sd=R+s−zd, giving s=zsz+1d−1e−2bszJ−hd=sAebGd−1.
So

GG = 2szJ− hd, AG = sz+ 1d/z, s29d

for zJ.h. sz−2dJ in any lattice.sThis is consistent with the
numerical predictions, and it includes the linear chain result
GG=4J−2h,AG=3/2d f27g.

Case (b). This includessd.1d-dimensional lattices in the
next regimesz−2dJ.h.

Now, as well asR+s−zd, the second flip-up rate,R+(−sz
−2d) becomes very small. The geometry of the domains ofn

andn±1 sites determines the numbersm in the ratesR+smd
occurring in the equation forunl. In particular the sizeq of
the smallest ring of bonds on the lattice determines asq−2
the number of successive equations in which the only up rate
is R+(−sz−2d). The consequence for the gap is that s is pro-
portional toR+s−zdfR+(−sz−2d)gq−2, giving the result

GG = 2szJ− hd + 2sq − 2dfsz− 2dJ − hg, s30d

whereq=4, 6, and 3 for square, honeycomb, and triangular
lattices. These results agree with the numerical ones.

The determination of theA’s is most easily carried out by
considering thesfirst order, nonlineard recurrence relations
for mn= unl / un−1l. In the low temperature limit, ratios of
small rates make the decidingmn’s tend to 1, for thesq−2d
lowest n’s, and to 0 for the next one; and in the limit the
ratios of the coefficientscn,dn in that range ofn’s determine
the numerical factor ins1−m1d and henceAG. The sanalytic,
numericald results areAG=f3/8,0.4s3dg, f1/6,0.1s6dg, and
f1/3,0.4s5dg for square, honeycomb, and triangular lattices,
respectively; the agreement is good except for the last one.

The boundaries of the region are set by where new com-
binations of ratesR± become limiting. The analytically de-
termined ranges of validity of the results in this casesbd are
4J.h.2J for triangular, 2J.h.J for square, andJ.h
.J/2 for the honeycomb lattice.

Case (c). For the triangular lattice there is a further
regime s2J.hd where yet another up-flip rate, namely,
R+(−sz−4d), becomes small.

Here we expect, in analogy to the argument and results
given above for the previous regime, thats will be propor-
tional toR+s−zdfR+(−sz−2d)gq−2fR+(−sz−4d)gQ with Q an in-
teger related to topological features of the triangular lattice.
This gives the form

GG = 2szJ− hd + 2sq − 2dfsz− 2dJ − hg + 2Qfsz− 4dJ − hg
s31d

swith z=6, q=3d. The numerical results are consistent with
this with Q=3.

B. Modified Glauber dynamics

Procedures for the MG dynamics are in principle similar.
But now the primitive rateR+s−zd,e−2bzJ is always small, in
all regimessevenh very larged, so always

GMG Þ 0. s32d

For the following we use the notatione=R+s−zd; D
=R+(−sz−2d); g=R+(−sz−4d); d=R−s−zd,R−(−sz−2d); mn

= unl / un−1l=s1−lnd. Then for any lattice the first two recur-
rence equations are

s= el1, s33d

zDl2 = dl1/m1 + s. s34d

After these, the equations become lattice dependent; e.g., for
the triangular lattice the next ones are

2gl3 = 2dl2/m2 + s, s35d
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3gl4 = 3dl3/m3 + s, s36d

4gl5 = 3dl4/m4 + s, s37d

etc. Details of the further reductions depend on the field re-
gime.

Case (a). For h. sz−2dJ, the rates satisfyd!D!g.
Then for all the lattices the equations give two possible

forms of solution:ln!1, somn,1 ands=0 sground stated;
or mn!1, sos=e,e−2bzJ. Hence

GMG = 2zJ, AMG = 1. s38d

This applies for any lattice, including the linear chain.
Case (b). In the next regimesz−4dJ,h, sz−2dJ, pos-

sible in sd.1d-dimensional lattices, the rate ordering isD
!d!g.

First consider the specific case of the triangular lattice.
Again becaused!g, for sÞ0 the higher equations of the
hierarchy giveln,1, n=2,3, . . .. But nowD!d, so the sec-
ond equation of the hierarchy givesl1=zD /d and it follows
that s=zeD /d. Hence

AMG = 1/z, GMG = 2Jz+ 2Jsz− 2d − 2h = 20J − 2h,

s39d

for the triangular lattice in this regime.
For the other lattices, a cycle ofsq−2d successive equa-

tions safter the first equationd involve D /d and that is the
origin of the general form

GMG = 2zJ+ 2sq − 2dfsz− 2dJ − hg. s40d

The sanalytic, numericald results forAMG for sz−2dJ.h are
f1/8,0.2s3dg, f1/6,0.1s3dg, and f1/6,0.3s4dg for square,
honeycomb, and triangular lattices, respectively.

Case (c). This is on the boundaryh=sz−2dJ between the
last two regimes. Here thesanalytic, numericald results for
AMG are f11/8,1.4s2dg, f11/6,1.6s6dg, andf7/6,1.1s6dg for
square, honeycomb, and triangular lattices, respectively.

Concerning the issue as to whetherG andA can be calcu-
lated for arbitrarily smallerh’s, notice that more and more
cluster amplitudes occur in the coupled eigenvalue equa-
tions. This makes their exact calculation difficult beyond the
regimes already treated. In particular, theA’s are more diffi-
cult to calculate exactly than theG’s because, in the coupled
eigenvalue equations, coefficients related to details of cluster
symmetries and surface geometry, etc., are needed for the
calculation of theA’s sbut not for theG’sd. Also, the cluster
amplitudes occurring in the coupled eigenvalue equations are
those that are of the samesdominantd order in the low tem-
perature ordering scheme. On the low field boundary of a
regime additional clusters typically become of comparable
order, and all their amplitudes are needed in the determina-
tion of theA’s.

V. CONCLUSIONS

The low temperature relaxational kinetics of Ising ferro-
magnets in a field has been treated for various lattices for
both Glauber and modified Glauber processes using a quan-

tum representation of the evolution operators. The unsymme-
trized version is convenient for the analytical work in the
low temperature limitsSec. IVd while the recursive numeri-
cal approachsSec. IIId requires the symmetrized form pro-
duced by a special spin rotation.

The gross features produced by the two approaches agree
completely. Those features include striking differences be-
tween the Glauber and modified Glauber cases. The latter
case is always activated, even at high fields. In each of a
sequence of field regimes, for both processesG is found to be
a linear function ofh and the amplitudeA is a constant, but
both A and the form ofG, and also the field regimes, differ
between Glauber and modified Glauber cases.

While A and the slope ofGshd are discontinuous at regime
boundaries,G is continuous. This can be understood from the
analytic discussion, where it is seen that the regimes are
distinguished by which rates are most limiting, and in the
low temperature limit the exponents in the limiting rates
cross over at the regime boundaries, and those exponents
determineG but notA.

Both the numerical and analytic investigations make no
use of the shape of critical droplets nor of the most probable
path toward a nucleation event, and were carried out for
square, triangular, and honeycomb lattices. The numerical
approach indicates, and the analytic one confirms, thatG is
lattice dependentsexcept in the nonactivated high field re-
gime of the Glauber case, where it is zerod, and alsoA is
lattice dependent except in the highest field regime for the
modified Glauber case. According to the analytic work, for
the highest field activated regime the lattice dependence ofG
involves just the coordination numberz for both Glauber and
modified Glauber cases, but in subsequent regimes other
geometrical aspects of the lattice, e.g., the smallest ring size
q, affect the value ofG. Similarly the lattice dependence ofA
is, as one moves down the field regimes, first throughz, and
thereafter involving further aspects of the lattice.

The quantitative agreement between the predictions of the
numerical and analytic approaches is very good forG, and
for the regime ranges, and slightly less good forA, particu-
larly for the smallest field regimes. This is as might be ex-
pected, sincesid at low temperatures a givensbut boundedd
numerical error in the gap evaluation will mostly propagate
an error inA, rather than inG, as the latter carries an extra
weight proportional tob; and sii d as h decreases the gap
becomes smaller, and so does the accuracy of the machine
calculations. This drawback also precludes to examine much
lower temperatures than those considered throughout. To un-
derstand more fully the comparisons between the numerical
and analytic results it would be desirable to generalise the
analytic work to finite low temperatures.

The analytic work includes predictions for arbitrary lat-
tices se.g., for the regimes in which the results forG, A
depend only onzd. It would be valuable to extend this, and to
extend the numerical work to other, especially three-
dimensional, lattices. Further suggested extensions of the
work are to other modelsse.g., Potts models, where domain
walls remain sharpd and to disordered cases: even a low con-
centration of weak bonds can make nucleation much faster.
Also, it would be interesting to apply our methodology to
more realistic dynamics including microscopic barriers, such
as those recently studied in Ref.f10g.
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