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Quantum approach to nucleation times of kinetic Ising ferromagnets

M. D. Grynberd and R. B. StinchcomBe
lDepartamento de Fisica, Universidad Nacional de La Plata, (1900) La Plata, Argentina
2Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
(Received 14 January 2005; published 6 June 2005

Low temperature dynamics of Ising ferromagnets under finite magnetic fields are studied in terms of quan-
tum spin representations of stochastic evolution operators. These are constructed for the Glauber dynamic as
well as for its modification, introduced by Pagk al. [Phys. Rev. Lett.92, 015701(2004)]. In both cases the
relaxation time after a field quench is evaluated both numerically and analytically using the spectrum gap of the
corresponding operators. The numerical work employs standard recursive techniques following a symmetriza-
tion of the evolution operator accomplished by a nonunitary spin rotation. The analytical approach uses low
temperature limits to identify dominant terms in the eigenvalue problem. It is argued that the relaxation times
already provide a measure of actual nucleation lifetimes under finite fields. The approach is applied to square,
triangular and honeycomb lattices.
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I. INTRODUCTION Ising ferromagnets evolving through detailed balance sto-

Nucleation phenomena are of basic importance in a widg&hastic ruleg17]. Specifically, we consider both the usual
range of metastable systems which typically involve theGlauber dynami¢18] along with a seemingly minor modi-
crossing of a free energy barrier that is large compared t§cation of the latter which, however, yields entirely different
thermal fluctuation§1]. Classical examples of such situation characteristics at large magnetic fieldd]. In either case,
are the formation of droplets in an undercooled gas or ofve construct a quantum spin representation of the evolution
crystals in an undercooled liquid, whereas numerous anal@perator whose spectrum gap Y provides a measure of
gies can also be found in contexts as diverse as, for instanceycleation rates. In line with the general grounds referred to
material sciencé2], astrophysicg3], and quantum liquids above, the implicit assumption allowing for this identifica-
[4]. Owing to the initial state of these systems, generallytion is that the first passage tini27] to create randomly a
produced by a rapid quench from a stable phase, the resultirggitical nucleus is much longer than the characteristic time
decay time before escaping from metastability may be exscale involved in subsequent growithd]. Thus, the relax-
tremely large at low temperatures. A significant part of theation of the entire system can be expected to coincide with
theoretical understanding of these relaxation processes h#se inverse of the probability of escaping from the metastable
been amply developed in the study of kinetic Ising ferromag-well. A posteriori our results will lend further support to this
nets as microscopi¢latticel models of nucleation. In this view.
framework, the metastable phase can be prepared after Another assumption that is usually made in homogeneous
equilibrating the system under an external magnetic field systems—and which is crucial for the feasibility of our nu-
which is then suddenly reversed. The system thereforenerical approach—is that multi spin-flip events as well as
evolves toward the full minimization of its free energy via fusion between subcritical clusters are vanishingly rare in the
the formation of droplets or small clusters of spins alignedlow temperature limif1,5]. This is supported by our analytic
with the new field direction. These droplets start growingwork. Therefore, the relevant length scale over which the
with very small rates until at least one of them exceeds mlow part of the dynamic takes place is of the order of a
critical size, i.e., a saddle point configuration or a local maxi-critical droplet size, the first one to nucleate. Although on
mum in the free energy landscape, thus triggering a rapidne hand this prevents us from dealing with small field re-
magnetization change in the whole system. This stems in pagimes, where the nucleus becomes macroscopic in the limit
from the competition between the energy gained by aligningr— 0; on the other hand this enables us to study other
spins with the field and the interface energy created in reoriregions using numerically accessible clusters, so long as the
enting previously parallel spins; thus escape from metastabiRucleus can be contained in them. This does not presuppose
ity essentially occurs when the cost of the latter is out-a precise knowledge of either the nucleus size and shape
weighted by the gain of the former. (sometimes a conceptual problem of its of#20]), or the

Several analytical studies have been addressed to elugihost probable path during a nucleation eVéh7], so in this
date the dynamical aspects of these processes in the lowggard our numerical and analytical procedures provide a
temperature limit[5-9] while more recently, the actual complementary approach to that of absorbing Markov chains
evaluation of average nucleation lifetimes has been studied7] and other related techniques discussed in Refs.
combining a range of numerical and analytical efforts[10,11,14,1%

[10-16. As a further step in this direction, in this work we  For two-dimensional lattices and low temperatufeshe
discuss an alternative low temperature procedbath nu-  average nucleation timgh,T) we aim to evaluate has been
merical and analytical to estimate the relaxation timeof  rigorously shown to be parametrizable [&$
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T=A(h)exd BI'(h)]; (1) dominant terms in the hierarchy of equations obtained by
applying the quantum spin Hamiltonian to an appropriate

thus, the temperature dependence enters solely in the factBtetastable state. We end the paper with Sec. V which con-
1/B8=kgT (hereafter the Boltzmann constdatis set equal to tains our conclusions along with some remarks on extensions
1). Independently of the stochastic dynamic considered, th&f this work.

exponential argument has been often associated with the

energy barrier separating the saddle point from the meta- II. DYNAMICS AND OPERATORS

stable phase. In fact, for the Glauber dynamics the analysis Let us then consider an Ising ferromagnet with uniform
of Ref. [5] corroborates this issue. However, the results of t neighbofNN) interactionsJ>0 between the spins
Refs.[10,1] clearly indicate that this interpretation bfis neares '9 ! : W P!

not alwa - re,:il of a regulard-dimensional lattice. Under an applied
ys correct, even though the geometry of the critica ic fieldh. taken itive from now on. the corre-

droplets remains unaltered by the change of dynamic. In parr_nagnetlc 1eldh, taken posiive 1ro 0 '

. e : . sponding Hamiltonian reads

ticular, for the modified GlaubeiMG) dynamics considered

there[21], and to be discussed in the following sections, - L

despite detailed balance the value Iofdoes not actually T P &5 hEsr, @

yield that energy barrier. Moreover, under strong magnetic

fields the nucleation process led by the MG dynamics turngvhere the first and second sums run, respectively, over all

out to remain activéi.e., I >0), whereas above a maximum NN or bond pairs(r,r’), and all spin locations of the

field the standard Glauber dynamic just exhibits a fast decalattice. Since’H, actually defines a classical energy func-

(I'=0). As for the amplitudesA of Eq. (1), as well as for tional, the constituent spins do not have a natural dynamics,

those involved in the nucleation times of a variety of systemd.e., ds.=[H,,s.]=0. Consequently, a specific stochastic

[1,13], they have been usually difficult to evaluate numeri-evolution must be prescribed so as to emulate the interac-

cally given their subdominant contribution. However, thetions between the spins and a heat bath, here modeling the

lack of a fair estimation of these prefactors may introduce fafast degrees of freedom not included in the classical Hamil-

reaching theoretical implications in the nucleation picturetonian’,. As usual, the underlying nonequilibrium dynamics

[22]. Recent efforts have been addressed to remedy this sitis then approximated by a discrete Markovian process and

ation in the context of Ising ferromagnets under finite fieldstherefore described by a master equation. The latter governs

[10,11,13,14 On departing from the low temperature regime entirely the time evolution of the probabilitiéXs,t) of find-

assumed in Eq(1), these amplitudes have revealed a strucding the system in a certain spin configuratighat timet. If

ture of narrow peakgl3] which, however, rapidly collapses W(s—s') denotes thgtime independentrate or transition

toward a piecewise constant function bfin the limit T  probability per unit time at which configuratigs) evolves to

— 0. Their actual values also turn out to be dynamics depens’), the master equation just adopts the continuity form

dent[10,11. Here, we numerically estimate tHé and A

parameters under finite fields using both the Glauber and MG~ aP(s,t) = X [W(s' — 9)P(s',t) = W(s— S')P(s,1)]. (3)

dynamics introduced in Refl11]. To check the reliability of s

our numerical operational approach we compare its results

with those obtained in square latticEs 11], and then pro-

(rr’) r

Because in the context of Sec. | metastability is imposed

by an external field, among the decay processes represent-

ceed further in honeycomk_) and triangular lattices where ngy, o by Eq.(3) we restrict our attention to those in which the
results are previously available to our knowledge. One ca btal magnetization is not preservg24]. One of the most

expect tthat n .ﬁdt?'t'oln to tf?e (tevglstloﬂr: d:etg!ls, thte r‘il""x""t'oitudied examples of this type is the Glauber dynafig].
(pj)a:ame_ ers m € asota e?ﬁl y't' ela(\j |ce| St rucltL_Jre ?‘Ci ts transition rates involve Ising configurations differing at
etermines the geometry of e critical droplets ultimately,,q iy the state of a spin at a given siteWith the aid of

cor?trollmg.the_ nucleation img5, 7). Apart from t.he SQUare  pe ocal field variables, which henceforth we define¢as
lattice, their size and shape are not knosvipriori but nei- =(3/T)S ;s.1, these rates can be written as
- r,r)yor’s

ther is needed in our procedure. Our low temperature ana-
!ytic work provides re_sults fc_)F andA_parameters generally Wg(s — —s,) =[1 +e2lertHs] 1 (4)
in good agreement with their numerical estimates. _ ) )

The layout of this work is organized as follows. In Sec. || WhereH=h/T. The iteration of these rules eventually bring
we recast the master equation governing the probability disthe system to the Gibbs distribution as they clearly satisfy
tribution of these processes in terms of a quantum spin anafietailed balance in Eq(3), that is, W(s—s')e "t =W(s’
ogy whose “Hamiltonian” provides the appropriate transition— s)e "', However, other single-spin-flip or Glauber type
rates between the original Ising spin configurations. Byprocesses can also be made consistent with these latter con-
means of an ulterior nonunitary spin rotation, this results in aitions, so the approach to equilibrium in these problems is
symmetric representation of the evolution operator. This simnot unique. As was referred to above, a recent case of this
plifies considerably the subsequent numerical analysis dfituation was introduced in Rdfl1] with the aim of clarify-

Sec. Il in which the spectrum gap of this latter representaing earlier issues of metastable lifetimes. In the MG dynam-
tion is obtained via standard recursive techniqi@3] in  ics proposed there, the effects of thenteractions and the
several situations. In Sec. IV we develop the analytical apfield h are factorized in the transition rates. More specifically,
proach, in which low temperature limits are used to pick outthese are given bj25]

066104-2



QUANTUM APPROACH TO NUCLEATION TIMES OF.. PHYSICAL REVIEW E 71, 066104(2005

Wys(s — —s) =[1+e?45] 1 +e?ts] L, (5)  spin clusters which, as pointed out in Sec. | can embody the
. . nucleation time of much larger systems. First, it is useful to
Although it can be easily checked that such rates also CoMycq)| the matrix elements of the evolution operatbrasso-

ply with detailed balance, it will turn out that each of the ¢iated with a generic Markovian process. In terms of transi-
above dynamics behaves quite differently under strong fiel¢io, rates these elements are constructefL @k
regimes. '

. (S'[H|9)=-W(s—5s), s#§, (8)
A. Mean field excursus
Before constructing a more convenient representation for - /
. . . SIH|s) = W(s—¢g'). 9
these processes, we pause briefly to consider this latter dy- (sl s%g (5—¢) ©

namic at a simple mean field level of description. Despite

being quantitatively uncontrolled, on the other hand it is ableThis permits us to think of the master equation in imaginary
to account for some relevant qualitative features actually octime as a Schrodinger-like representati@t))=e {|P(0))
curring in the MG dynamicésee Secs. Ill and IV Thus, in  in which the probability distribution|P(t))=24P(s,t)|s)
order to decouple the rather involved hierarchy of equationgvolves according to the action of the evolution operator—
implicit in Eqg. (3) we simply approximate the local field here playing the role of the Hamiltonian—on the initial state
variablese, by their mean value(s)J/T, in turn assumed to  |P(0)) (in our case, a metastable Gibbs distribution opposing
be homogeneous. Herés) denotes the average magnetiza-the new field direction The specific form of in either of
tion whereasz stands for the number of NN spins, i.e., the the above dynamics can be straightforwardly found in terms
lattice coordination number. After inserting the so approxi-of spin% Pauli matricese and interpreting the local field
matedW ¢ rates in Eq.(3), we readily obtain the magneti- variables involved in Eqg4) and(5) as local field operators
zation dynamics in terms of a nonlinear differential equationg?:

which at finite fields and low temperature regimes reduces to

J
Z V4
1-(9 gi==2 o, (10
a(s) = ]--l_e_wr, hT>1. (6) T(r,r’)

which just for convenience are taken diagonal, say indhe

Hence, for the region of our interest the relaxation dynamic : : ; 4 oy
comes out to be field independent in this scheme. Althougt?aepresentatlon. To connect tcconfigurations of spins dif

this is not the actual case below a minimumvalue (see ering in the state of site, and therefore to account for the
results of Secs. Il and IV yet the analysis of Eq6) pin- off diagonal elementés), we simply project the correspond-

: ; . . ing “rate operator’(set by ¢?), in terms of the usual spin
points a genuine difference with respect to the Glauber dyfa?sing andplowerirgg pro?/ei%m;f o For example usirr)19
r+Yr- 1

namics. Notice that for this latter, H/J>z, in the limit T .
—0 the resulting master equation is totally decoupled by inhdhe Glauber rate¢4), the operational counterpart of E(§)

Glauber rate$4), just as if the spins were independent. Then,WIII read
it follows that d(s)=1—(s), and therefore the time scale of Nt _ + ~2(pP+H) -1

. S'XS'|Hgls){s| =~ l+e
the Glauber problem is of the order of an elementary step, 2 8748 [Hclsx ; torl ]
namely, 7=1 (see also Sec. Il By contrast, in Eq(6) the ,
magnetization evolves initially with a much slower pace as + o [1+eXert]y (12
its change is exponentially plunged by the initial metastable_ . i o
phase. In fact, the integration of the reciprocal of Eg).  Sincel¢r,o7]=0, the above ordering of application is imma-
betweens)=—1 and a subsequent magnetizatigi> -1 in- terial. On the other hand, conservation of probability requires
volves large escape times. More precisely, with the aid of théh® emergence of the diagonal elemef®gs They basically

exponential-integral function EE)) and its asymptotic ex- count the number of ways in which a given configuratigin
pansiong 26], we obtain can evolve to different statds’) through a single spin flip.

This can be properly tracked down by using the number
T 22T operatorsi, =a; o, along with the weighting of each flip
™ 423 » TH<1. ) with its corresponding rate. For the Glauber case the analog

of Eq. (9) then becomes

s;s’ ,s#s'

This is consistent with a value df=2zJ in Eqg. (1) which

later on will be corroborated both numericallgec. Il) as > |s{sIHg|s)(s]
well as analytically(Sec. IV). The corresponding amplitudes, s

however, are significantly underestimated by this mean field
simplification which nevertheless is already able to capture
the metastability of MG dynamics, at least under strong field
conditions. 1

= 52 [1-o7tanh(¢f +H)], (12

= D {1+ T4 [1 - (1 +e 2]

B. Quantum spin representations

We now build up an alternative representation of ).  which together with Eq(11) completes the form of+g.
lending itself more readily for a numerical study in finite Certainly, the above reasoning is extensible to the MG dy-

066104-3



M. D. GRYNBERG AND R. B. STINCHCOMBE PHYSICAL REVIEW H1, 066104(2009

namic as well. The related evolution operafdy,s of this The formal analogy with the Schrodinger picture referred
case thus finally turns out to be to above now becomes more transparent, as all solutions of
the master equation are necessarily obtained as superposi-
Hye= - 1 sechHY, [ofeH(1+e24) 1+ greH(1 +e24)]  tions of eigenstatef),) with real eigenvaluegor energies
2 r A=0 of Hermitian Hamiltonians. In particular, the ground
1 states|) of both Hg and Hy,g coincide and are closely
+=> (1 -0 tanhe?) (1 - o tanhH) (13)  related to the equilibrium Gibbs distribution. This is because
4 . r r r !

(J|=3(s is the left steady state of the original stochastic
which of course reduces s whenh=0 [25]. Also, it can operators(notice that their columns add up to zgrand

be easily verified that either of these operators remains intherefore(yg|=(#|U™*=S(sle”#"9"2, modulo a normaliza-

variant under the spin inversiarf— —o* along with the field tion factor \VZ involving the partition function of the Ising

reversalhn— —h, as they should. Given the rather involved energieq2). It is thereby a simple matter to check that in our

manner in which all spins are coupled through the local fieldsymmetric representation the dynamics of any classical

operatorsp?, exact analytic treatments of the spectruntf  quantity.A (which is already diagonal in the” representa-

or of Hyg under generic field and temperature conditionstion, such as the magnetization, the enekgy or any micro-

may seem unlikely, even id=1 [27]. However, by exploit- scopic correlatgrcan be written as

ing low temperature limits analytic procedures can be devel-

oped and applied, as shown in Sec. IV. In addition, numerical (AXt) = EE AlglePis + > e‘“<~<];|U'1A|z/f)\>

progress can be made in fair system sizes by means of a VA A>0

suitable similarity transformation which we now discuss. % (45 |U|P(O)). (19)

C. Symmetric representations Thus, we see that the relaxation times discussed throughout
Sec. | can be read off from the first excited level of the

As is known[17], the d.eta|led balance propgrty qf ratgs evolution operators constructed so far and whose numerical
(4) and(5) warrants the existence of representations in which

: : : nalysis we next turn nsider.
Hg and Hyg are symmetric and thereby dlagonallzable.a alysis we next tum to conside
Moreover, acommontransformation for that purpose can be
found for both dynamics. To this end, we rotate the corre- IIl. NUMERICAL RESULTS

sponding operators around tlzespin direction using a site ) )

and (18) is that their lower eigenmodes, which are just the

¢ =—i(e +H), (14 ones dominating the above nonequilibrium terms, can be ef-
ficiently computed using recursion-type algorithms devised
for Hermitian matrices, e.g., the Lanczos technifR®. The
latter is particularly appropriate to study system sizes ca-
pable of accommodating critical droplets arising from not
too small field regimes. Specifically, forsmuarelattice the

g (ertH)/2 0 } 15 critical nucleus is anl X (£-1) rectangle of overturned

where thep’s are the original scalar fields introduced in Egs.
(4) and(5). This rotation is produced by the nonunitary simi-
larity transformatiorl =eS with S=33, ¢, %, which in turn
results in the direct product

spins gathered to a similar spin on one of its long sides of
length £=[2J/h], where[ ] denotes the integer pafb].
While the diagonal terms df{g and g remain unaltered Hence, in line with the general arguments of Sec. | one could
by U, it is straightforward to show that expect that forh/J=0.5 a spectrum gap of at least €8
. - N spin system will suffice to yield actual values of nucleation
UorU=e" @™ot (16) tifnes ?/n the low temperatu?/e limit.
From this latter relation, one can immediately verify that the ~ Thus, starting from a random initial state but chosen or-

rotated Glauber operatét;=UHU™ can finally be cast in thogonal to the Gibbs-like distributidey,) referred to above,
the symmetric form we carried out the standard Lanczos procedure in such spin

clusters using periodic boundary conditioffereafter, as-
sumed throughout this sectipnLet us first consider the
Glauber operatofl7). In Fig. 1 we show the results obtained
from its first excitation level\,, i.e., above equilibrium,
(17 when varying the fielch/Je (1,4) at low temperature re-

whereas the rotated versioty,;=UH,,cU™* of the MG dy- gimes T/J~0.2-0.4. The nucleation time parametrization

U= Q?U,, U, = [ 0 glertH)/2

=5 S [1 - of tant(ef + H) - of seclief + H),

namics is also symmetric and comes out to be conjectured by Eq(1), here identified with 1X, is consis-
L tent with both the data collapse in the main panel as well as
ro_ =t _ N with the linear behavior evidenced in the inset. In particular,
Hue 42 [(1 = o7 tanher)(1 = o7 tanhH) the slopes of the latter detect three typical amplitude values

i which in turn are used as scaling factors in the main panel,
— a7 sechgf sechH]. (18)  thus producing, as expected, the collapse of different curves.
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FIG. 2. Relaxation parameters of honeycomb lattices estimated
m the diagonalization of Eq17) using the 18-spin cluster de-
picted by the lower inset. As in Fig. 1, the amplitudes yielding the
data collapse in the main pangl=0.2 (squareg 0.3 (triangles,

and 0.4(circleg] were inferred from the slopes of the upper inset.
The latter refer respectively t0=0.75 (top), 1 (middle), 1.5 (bot-

tom) and are representative of the field regimes summarized in Eq.
(21) (solid lines of main pangl

FIG. 1. Low temperature estimation of the relaxation parameter§ro
I'=TIn(7/A) in square lattices fof =0.2 (squarey 0.3 (triangles,
and 0.4(circles resulting from the Lanczos diagonalization of Eq.
(17) in small clusters(up to 6X4 sping. Solid lines denote the
estimations of Eq(20). The data collapse was attained upon using
the amplitudesA=€® derived from the slopes of the upper inset.
From top to bottom they refer respectively be=1.7, 2, and 2.3,
characterizing typical regimes of E¢L7). The lower lines sketch
the shape of the critical droplets forth<2 (three spinsand 2
<h<4 (single spin. Here and in all subsequent figurdsh, andl’

are measured in units of the exchange couplitgs sis of Sec. IV. As conjectured earlier, size effects are negli-

gible around this field region, at least judging fronx 3,
4x 4, and preliminary results in %4 spin arrays, all of

After a least square linear fitting of our data, the correspond\-NhICh can enclose the critical droplets depicted in Fig. 1. In

ing relaxation parameters within the above temperature ang]o'ﬁsr;?eag?\’lv;r? té)coethtrt]ﬁ; ;huifggér?:ﬁ;gg'ga dvﬁl;efgifsr:ner
field ranges are found to be g ay

of such droplets, in turn recovering the interpretatiod afs
an energy barrier. Also by approaching the decoupling con-
dition h/J=z from below, the low lying levels, which were
16(1)J-6(0)h, 1= h <2, nondegenerate so far, closely approach one another, as they
should, wherea¥';— 0.
h Bolstered by these consistency checks, we now turn our
8.(1)J-2(0h, 2< 3 =4, procedure to honeycomb and triangular lattices for which
these nucleation parameters are not previously availabke
( (20 also Sec. IV. Due to the roundoff limitations mentioned
0.43), 1= h <2, above, we restricted the computations respectiveihtd
J =0.5,T/J=0.1 andh/J=1.5,T/J=0.3. For the first situa-

FGN

h tion, Fig. 2 displays the results so obtained in an 18-spin
Ag~{ 1.99), 3 2, honeycomb clustefschematized by its lower ingetThese
are in line with the parametrizatiofi), and for which our

1.33), 2< h =2 numerical estimations yield
33), 754

\
It should be mentioned thakelow T7J~0.1 andh/J~1, the h
spectrum gap gradually becomes comparable to the numeri- 14(1)J-10(1)h, 05=-<1,
cal propagation of our roundoff errors, while the conver- s J
gence of the Lanczos recursion becomes slow and erratic. G h
Nonetheless, above those regimes, where these problems do 6.(0J-2(0h, 1< 353
not show up, our results are already in fair agreement with

those of Ref[11] as well as with the low temperature analy- (21)
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r
h
0.1(6), 0.5S3<1!

2.2(1), 1,

As ~ 9

1.3(3),

h
1<—-=3.

J
\
Preliminary tests using 24-spin clusters showed no substan-
tial differences with these results. This conforms with the
fact that within our accessible lower field bounds, the above
I'c’s at most can entail a five-spin nucle@ssuming the
usuall’ interpretation still holds However, the shape of this
nucleus cannot be inferred only from its surface tension
(14J) asz is not large enough. In contrast, the results of the
triangular lattice lend themselves more readily for this pur-
pose, at least for the field range shown in Fig. 3. After ana-
lyzing 4X 4 and 5x 4 triangular clusters, in this case further
cusps inI" and amplitude discontinuities are detected,
namely,

PHYSICAL REVIEW E1, 066104(2009

16

12

r s

Tt ‘

12

0.3 0.7

2

o U O

h

FIG. 3. Relaxation parameters of triangular lattices arising from

h
32(1)J-10(Dh, 15=5<2,

the gap of Eq(17) in 4X 4 and 5x< 4 spin clusters. As before, the
data collapse was obtained from the slopes of the upper inset. The
former refers tdT=0.3 (triangles, 0.4 (squarel and 0.5(circles],

h
Fg~920(0J-4(0h, 2< J <4 and follows closely the field regimes given in Eg2), denoted by
h solid lines. The amplitudes resulting from the inset slopes are char-
12(0)J-2.(0)h, 4<-—- =<6, acteristic of the regimes identified in E(R2). Here, they refer to
L J h=1.8, 2, 3, 4, and 4.5, in descending order. The size and shape of
( (22 critical droplets are schematized below. From left to right they refer
h to five spins(1.5=h<2), two spins(2<h<4), and a single spin
07(0), 1553<2, (4<h<86).
.
100, ==2, h
0.23), 1< 3 <2,
h
Ac~1{ 0.45), 2<- <4, h
\] AMG~< 14(2), 3:2,
1'4(2) i) - = 41 h
1.(0), =>2,
h \ J
1.22), 4<—-=<6.
\ whereas for honeycomlFig. 4(b)] and triangulaf Fig. 4(c)]

Next, we consider the modified Glauber operdt®). In
all studied situations, its numerical treatment comes out to be
numerically more demanding, i.e., spectrum gaps are even
smaller than before, particularly below/J=z-2. So we
limit our computations toh/J=1, T/J=0.2 for square,
h/J=0.3, T/J=0.2 for honeycomb, and/J=2, T/J=0.3
for triangular lattices. Despite these restrictions, the results of
Fig. 4 clearly support larger values bfh) than those ob-
tained for the Glauber dynamic. Also, the amplitude values
turn out to be different as well as their regimes of validity.
Specifically, for the square lattid€ig. 4(a)], we find

h
16(1)J-4(0h, 1<5<2,

I‘MG
8.(0)J,

\

21

[ e

(23
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systems the respective parameters become

h
14(1J-8(0h, 03=7<1,

1—‘IMG

6.(0)J,

AMG~<

f

and

\

0.13),

1.6(6),

1.(0),
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T T h
20(1)J-2(0)h, 2= 3 <4,
—_ I ~ h
e 12(0)J, 3=4,
r A (25
= ‘ 0.34), 2=-—-<4,
03 04 J
T h
AMG~< 11(6), 3=4,
h
. . 1.(0), —=>4.
3 4 J
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It is worth remarking that, as before, the square lattice pa-
T T rameters are in reasonable agreement with those of REf.
which lends us further confidence in the identification of
. 1/n; with the nucleation time of the system. Since in all

“oa
QQQQD{U odf
~

studied case$'y,g(h) >TI"g(h), notice that the usual associa-
tion of I' with an energy barrier no longer applies for this

dynamics[10,11]. Also, these results give evidence that the
eyt B nucleation process persists at large times and fields, i.e.,
Iwe=2Jz>0, as opposed to the Glauber picture where
02 03 04 =1 beyondh/J=z. Other tests using much larger fields sug-
T gest an identical behavidsee also Sec. IV always main-

taining a nondegenerate level.

Finally, we point out that errors throughout &lls might
be actually larger than those estimated above, given their
subdominant contribution te in Eq. (1), especially within
the smaller field regions. This is reflected in the low sensi-
tivity of the data collapse to amplitude changes slightly away
] from their error bandsgarising only from upper inseks

IV. LOW TEMPERATURE ANALYSIS

M%w%m@ J
Here we develop a low temperature analysis, starting

e from the quantum formulation of Sec. Il, which provides

. analytic results for the relaxation parametérand A. The
seseeny method employs the unsymmetrized Hamiltonian

0.7
] H=-3 [(a:—P;)R+(E of,)+(a;—P:)R—(2 af,ﬂ,
r r’ r’
(26)

wherer’ are the neighbors of, and Pfs%(lia{). Low
temperature versions of the appropriate r&t&sn) are used.
Here, and throughoutn is an integer corresponding to the
FIG. 4. Relaxation parameters ¢f) square,(b) honeycomb, “total spin” of the neighbors, and- relates to flip up or
and (c) triangular lattices under thenodified Glauber dynamics down. The unsymmetrized form @{ is easier to work with
given in Eq.(5). Solid lines in each case stand, respectively, for thebecause the low temperature forms of the rates there are
regimes identified in Eqs(23)—(25). In (a) and (b) they follow nicely separated.
closely the data ofT=0.4 (circles, 0.3 (triangles, and, 0.2 With |n) the amplitude corresponding to a domaimaip
(squarey obtained from the numerical diagonalization of Eb8);  spins in the eigenfunction for eigenvalsethe eigenvalue
and similarly for(c), where the points denote=0.8 (triangles, 0.6 problem involves a hierarchy of equations relatimy to

(circles, and, 0.4(squares In contrast to the standard Glauber In£1), each of which is of the following schematic form:
dynamics, here the relaxation process remains active at large fields, ) B
[cR*(-++) + dyR7(-++) = s]|n)

i.e., I'>0 for h>J. As before, the amplitudes were derived from
=CR'(-)In+ D+ dR(--)n-1).  (27)

the slopes of the insets. In descending order they refer respectively
to (a) h=1.5,2,2.5,(b) h=0.75,1,1.5, andc) h=2,2.5,4,5(hori-
Here the coefficients, andd, depend on geometric factors

zontal ling, typical cases of each situation.
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of the lattice such as its coordination numleiThese equa- andnzx1 sites determines the numbearsin the ratesR*(m)
tions are consistent with an equal amplitude eigenstate witbccurring in the equation fgn). In particular the sizey of
eigenvalues=0. We want the next eigenvalue, i.e., the “gap” the smallest ring of bonds on the lattice determineg-ag
s=(Ae’)L. the number of successive equations in which the only up rate

The relaxation from a metastable state, which we take tds R*(-(z—2)). The consequence for the gap is that s is pro-
have all spins dowrii.e., antiparallel to the field is gov-  portional toR*(—2)[R*(-(z-2))]9°2, giving the result
erned by the slow rates, especially the slow up-flip rates.

Which rates are small depends on the field, so different field I'e=2(zJ-h)+2(q-2)[(z-2)J-h], (30
regimes have to be considered separately. The first equatiQphereq=4, 6, and 3 for square, honeycomb, and triangular
(n=0) hasd,=0, i.e., the only terms come froMR"(*) |attices. These results agree with the numerical ones.
=R’(-2), corresponding to nucleation of a single up spin,  The determination of th&'s is most easily carried out by
which state has amplitudé). The only case wherB*(-2) is  considering the(first order, nonlinear recurrence relations
not small at low temperatures is the Glauber dynamics casgyr un=N/|n=1). In the low temperature limit, ratios of
with zJ<h, whereR"(m)~1 for all m. The equations then small rates make the deciding,’s tend to 1, for the(q-2)
give the gap of order 1, so lowestn’s, and to O for the next one; and in the limit the
I'e=0, hJ>z (28) ratios of th_e coefﬁcie_ntsn,dn in that range of's determi_ne
the numerical factor ifl1-w4) and henceds. The (analytic,

In all other case&*(-z) is exponentially small ir8 at low numerical results areA;=[3/8,0.43)], [1/6,0.46)], and
temperatures, and this results in nonzéréor Glauber dy-  [1/3,0.45)] for square, honeycomb, and triangular lattices,
namics(G) with zJ>h and for modified Glauber dynamics respectively; the agreement is good except for the last one.
at anyh. So we confine our attention hereafter to those cases, The boundaries of the region are set by where new com-
at very low temperatures. TheR;(-2) is by far the smallest pinations of ratesR* become limiting. The analytically de-
of the flip-up rategsince for any positive integdy for MG termined ranges of validity of the results in this célbpare
dynamicsR*(-I) ~e# <1, while in the Glauber case, if 4J>nh>2J for triangular, 2>h>J for square, and>h
h<1J thenR*(-I) ~ e 2#¥-M < 1]. Consequently we may ne- > J/2 for the honeycomb lattice.
glect terms involving further factors &t (-z), as occur, cor- Case (c) For the triangular lattice there is a further
responding to further nucleations of isolated single-spin clusregime (2J>h) where yet another up-flip rate, namely,
ters, in the equations far>0. As a result, in Eq(27), for  R*(-(z-4)), becomes small.
amplitudes|n=2), it is only necessary to consider “con-  Here we expect, in analogy to the argument and results
nected clusters” where all up spins have at least one up-spigiven above for the previous regime, tisawill be propor-
neighbor. For example the second equatior=1) has tional to R*(-2)[R*(-(z—2))]% I R*(-(z—4))]° with Q an in-
CR(--)=zR'(-(z-2)) andd;R(---)=R(-2) after neglect- teger related to topological features of the triangular lattice.
ing the further nucleation terms involvirig (-2). This gives the form

While basic ideas and procedures are similar for G and
MG dynamics, because of the different forms of their rates, I'e=2(zJ-h)+2(q-2)[(z-2J-h]+2Q[(z-4)J - h]
the ordering of terms in the equations can be different in (31

some regimes, so we discuss the two cases separately, begjn-,, __ _ . . .
ning with the Glauber case. ﬂwnh z=6, q=3). The numerical results are consistent with

this with Q=3.
A. Glauber dynamics

Case (a) This includesd-dimensional lattices wittzJ B. Modified Glauber dynamics

>h>(z-2)J. Here R'(-2)~e 2@ <1 and all other Procedures for the MG dynamics are in principle similar.

R*(m)~1 while R (-2) ~ 1. But now the primitive ratdR*(-z) ~ e %% is always small, in
The resulting recursion type eigenequations héasal-  all regimes(evenh very large, so always

ways the equal amplitude solution witt=0, and(because

the only smallR* occurring is in the first equatiorthe next T'we # 0. (32
eigenvalue satisfiesin the low temperature limjt[R*(-2) For the following we use the notatioe=R*(-2); A
-s)(z+1-5)=R"(-2), giving s=2(z+ 1) e A=V =(Ae") L. =R¥(~(z-2)); y=R*(~(z-4)); 6=R(-2) ~R(~(z-2)); un
So =|n)/|n-1)=(1-X\,). Then for any lattice the first two recur-
Te=2zJ-h), As=(z+1)/z, (29)  ence equations are

for zJ>h>(z-2)J in any lattice.(This is consistent with the S=€hg, (33
numerical predictions, and it includes the linear chain result

I'g=43-2h,A;=3/2) [27]. ZAN, = SN/ + S. (39

Case (b) This includegd> 1)-dimensional lattices in the
next regime(z—2)J>h.

Now, as well asR*(-z), the second flip-up rateR*(-(z
-2)) becomes very small. The geometry of the domains of 29YN3 = 26Nl o + S, (35

After these, the equations become lattice dependent; e.g., for
the triangular lattice the next ones are

066104-8
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3YNg= 30Nl uz+, (36) tum representation of the evolution operators. The unsymme-
trized version is convenient for the analytical work in the
Ayhs= 38Nyl g+ S, (37) low temperature limi{Sec. I\V) while the recursive numeri-

cal approachSec. Ill) requires the symmetrized form pro-
etc. Details of the further reductions depend on the field reduced by a special spin rotation.
gime. The gross features produced by the two approaches agree
Case (a) For h>(z-2)J, the rates satisfig<A <. completely. Those features include striking differences be-
Then for all the lattices the equations give two possibletween the Glauber and modified Glauber cases. The latter

forms of solution:\,, <1, sou,~ 1 ands=0 (ground statg  case is always activated, even at high fields. In each of a

or u,<1, sos=e~e 22 Hence sequence of field regimes, for both procedsésfound to be
a linear function ot and the amplitudé\ is a constant, but
've=2zJ Ayc=1. (38) both A and the form ofl", and also the field regimes, differ
. . L , , ) between Glauber and modified Glauber cases.
This applies for any lattice, including the linear chain. While A and the slope oF (h) are discontinuous at regime

_Case (b) In the next regime(z-4)J<h<(z-2)J, pos-  poyndariesT is continuous. This can be understood from the
sible in (d>1)-dimensional lattices, the rate orderingAs  gpalytic discussion, where it is seen that the regimes are
<o<y. distinguished by which rates are most limiting, and in the

First consider the specific case of the triangular latticeJow temperature limit the exponents in the limiting rates
Again becaused<y, for s# 0 the higher equations of the cross over at the regime boundaries, and those exponents
hierarchy given,~1,n=2,3,.... But nowA < §, so the sec- determinel’ but notA.

ond equation of the hierarchy givag=zA/é and it follows Both the numerical and analytic investigations make no
thats=zeA/ . Hence use of the shape of critical droplets nor of the most probable
path toward a nucleation event, and were carried out for

Avc=1lz, Tyg=2Jz+2)(z-2)-2h=20]-2h, square, triangular, and honeycomb lattices. The numerical

(39) approach indicates, and the analytic one confirms, fthist
lattice dependentexcept in the nonactivated high field re-
for the triangular lattice in this regime. gime of the Glauber case, where it is zerand alsoA is
For the other lattices, a cycle ¢f—2) successive equa- lattice dependent except in the highest field regime for the
tions (after the first equationinvolve A/ and that is the modified Glauber case. According to the analytic work, for

origin of the general form the highest field activated regime the lattice dependende of
involves just the coordination numbefor both Glauber and
Iv =223+ 2(q-2)[(z-2)J-h]. (400 modified Glauber cases, but in subsequent regimes other

The (analytic, numericalresults forAyg for (z—2)J>h are geometrical aspects of th lattice, eg., the smallest ring size
[1/8,0.23)], [1/6,0.13)], and [1/6,0.34)] for square g, affect the value of . Similarly the lattice dependence Af
hone'yc.omb’ and t}ia.ngulér lattices r,eépectively. " is, as one moves down the field regimes, first thromggnd

- _ thereafter involving further aspects of the lattice.
Case (c) This is on the boundar=(z-2)J between the The quantitative agreement between the predictions of the

last two regimes. Here th@nalytic, numericalresults for  umerical and analytic approaches is very goodIfpand
Avc are[11/8,1.42)], [11/6,1.66)], and[7/6,1.16)] for  for the regime ranges, and slightly less good Agmparticu-
square, honeycomb, and triangular lattices, respectively. |arly for the smallest field regimes. This is as might be ex-
Concerning the issue as to whettizandA can be calcu- pected, sincéi) at low temperatures a givefibbut boundeyl
lated for arbitrarily smalleih’s, notice that more and more numerical error in the gap evaluation will mostly propagate
cluster amplitudes occur in the coupled eigenvalue equaan error inA, rather than i, as the latter carries an extra
tions. This makes their exact calculation difficult beyond theweight proportional tog; and (i) as h decreases the gap
regimes already treated. In particular, e are more diffi- becomes smaller, and so does the accuracy of the machine
cult to calculate exactly than tH&s because, in the coupled calculations. This drawback also precludes to examine much
eigenvalue equations, coefficients related to details of clustdower temperatures than those considered throughout. To un-
symmetries and surface geometry, etc., are needed for thierstand more fully the comparisons between the numerical
calculation of theA’'s (but not for thel™s). Also, the cluster and analytic results it would be desirable to generalise the
amplitudes occurring in the coupled eigenvalue equations argnalytic work to finite low temperatures.
those that are of the sandominanj order in the low tem- The analytic work includes predictions for arbitrary lat-
perature ordering scheme. On the low field boundary of aices (e.g., for the regimes in which the results fby A
regime additional clusters typically become of comparabledepend only orz). It would be valuable to extend this, and to
order, and all their amplitudes are needed in the determinaextend the numerical work to other, especially three-
tion of theA’s. dimensional, lattices. Further suggested extensions of the
work are to other modelge.g., Potts models, where domain
walls remain sharpand to disordered cases: even a low con-
centration of weak bonds can make nucleation much faster.
The low temperature relaxational kinetics of Ising ferro- Also, it would be interesting to apply our methodology to
magnets in a field has been treated for various lattices fomore realistic dynamics including microscopic barriers, such
both Glauber and modified Glauber processes using a quaas those recently studied in R¢LO].

V. CONCLUSIONS
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